技术文章

当前位置:主页 > 技术文章 > 手持式X射线荧光光谱仪在高压隔离开关触头镀银层腐蚀故障分析中的应用

手持式X射线荧光光谱仪在高压隔离开关触头镀银层腐蚀故障分析中的应用

时间:2020-05-12 点击次数:148
摘要:针对一起110kV隔离开关触头的腐蚀故障,采用手持式X射线荧光光谱仪分析故障隔离开关触头镀层的化学成分,发现厂家使用银氧化锡(Ag-SnO2)镀层代替镀银层。分析认为在工业含硫大气环境中,Ag-SnO2镀层中的银被SO2、H2S等硫化物腐蚀,铜基体在潮湿环境下腐蚀生成Cu2(OH)2CO3,从而导致隔离开关触头导电回路的接触电阻升高,引发过热故障。针对此次故障,提出了解决措施和建议。

 

 

 

关键词:手持式X射线荧光光谱仪;隔离开关触头;电刷镀银;银氧化锡;腐蚀
中图分类号:TQ153.16    文献标志码:A    文章编号:1004 – 227X (2019) 23 – 1 – 04
高压隔离开关是电力系统中使用多、应用广的一次设备。由于高压隔离开关多在户外运行,长期受风吹、雨淋、雷电、潮气、盐雾、凝露、冰雪、沙尘、污秽,以及SO2、H2S、NO2、氯化物等大气污染物的影响,因此各部件会发生不同程度的腐蚀[1-2]。高压隔离开关触头是关键部件,承担着转接、隔离、接通、分断等任务,其工作状态的好坏直接影响整个电力系统的运行[3]。高压隔离开关触头的基体为纯铜,但纯铜易被腐蚀,会造成表面接触电阻升高,引发过热故障,影响开关设备和电网的安全稳定运行[4-6]。为了减小接触电阻,DL/T 486–2010《高压交流隔离开关和接地开关》、DL/T 1424–2015《电网金属技术监督规程》和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》[7]中明确规定:隔离开关触头表面必须镀银,且镀银层厚度不小于20 μm,以获得较低的接触电阻,从而保证良好的导电性。然而,在实际运行中,很多厂家生产的高压隔离开关产品会出现触头腐蚀、变色发黑、发热等故障,一般是由触头镀锡代替银或镀银层厚度不足造成,这些缺陷都可以通过国家电网公司开展的金属专项技术监督检测隔离开关触头镀银层厚度而发现[8]。

 

近期,四川电网在金属技术监督中发现一起高压隔离开关触头腐蚀案例,镀银层厚度检测结果合格,但在采用手持式X射线荧光光谱仪分析镀层化学成分时发现,厂家竟然使用银氧化锡(Ag-SnO2)镀层代替镀银层,该造假手段通过颜色判断和镀层测厚无法发现,非常隐蔽,很容易因未进行镀层成分分析而误判合格,严重威胁电网的安全运行,希望引起各运维单位注意。
                                   

1    高压隔离开关触头的腐蚀故障

某110 kV变电站于1991年投运,当地大气污秽等级为E级,大气类型为工业污染。周边潮湿多雨,化工、煤炭、玻璃等重工业污染企业密集,空气中SO2、H2S等硫化物浓度较高,大气的腐蚀性较强。2013年更换隔离开关触头,防腐措施为铜镀银。2017年站内巡检发现某110 kV隔离开关触头腐蚀严重,动、静触头接触面大部分呈绿色,少部分呈黑色(见图1)。红外测温发现该隔离开关触头存在过热故障,若继续运行,可能会造成隔离开关烧毁,甚至大面积停电等恶性事故,运维单位国网泸州供电公司紧急安排停运该隔离开关,并与国网四川电科院联合开展故障分析。

 

图1  某110 kV隔离开关触头的腐蚀情况

2    手持式X射线荧光光谱仪的检测原理

X射线荧光光谱分析是用于高压隔离开关触头表面金属成分检测的一种非常有效的分析方法,具有快速、分析元素多、分析浓度范围宽、精度高、可同时进行多元素分析、无损检测等优点,被广泛应用于元素分析和化学分析领域[9]。其原理[9-12]为:由激发源产生高能量X射线照射被测样品,样品表面元素内层电子被击出后,轨道形成空穴,外层高能电子自发向内层空穴跃迁,同时辐射出特征二次X射线。每种元素都有各自固定的能量或波长特征谱线,具体与元素的原子序数有关。检测器测量这些二次X射线的能量及数量或波长,仪器软件将收集到的信号转换成样品中各种元素的种类和含量。

X射线荧光光谱仪通常可分为波长色散型和能量色散型两大类,各自原理如图2 [11]所示。波长色散型光谱仪一般采用X射线管作为激发源,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分,属于台式仪器。能量色散型光谱仪是利用荧光X射线具有不同能量的特点,将其分开并进行检测,从而确定元素成分和含量,可以同时测定样品中几乎所有的元素,激发源使用的X射线管功率较低,且使用半导体探测器,避开了复杂的分光晶体结构,因此仪器工作稳定,体积小,便携性高,价格也较低,能够在数秒内准确、无损地获得检测结果,被广泛应用于金属材料中元素的精确定量分析[12-13]。
 

图2  波长色散型(a)和能量色散型(b)X射线荧光光谱仪的检测原理

目前市售手持式X射线荧光光谱分析仪基本都是能量色散型X射线光谱仪。图3是目前四川电网基层供电公司使用的美国Thermo Fisher Scientific Niton XL2 800手持式X射线荧光光谱仪,它不受分析样品的大小、形状、位置限制,无需拆卸隔离开关,可以携带至变电站现场,能够分析Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Re, Au, Pb, Bi等25种元素。

 

图3  手持式X射线荧光光谱仪


3    现场检测结果

3. 1    镀层化学成分分析

使用XL2 800手持式X射线荧光光谱仪对110 kV隔离开关触头不同颜色区域的镀层和铜基体进行分析,结果见表1。银白色区域中Ag、Cu和Sn的质量分数分别为91.48%、1.83%和5.71%。Cu是隔离开关触头的基体成分,查阅文献[14]可知,该银锡比例是第二相SnO2颗粒弥散分布于银基质层中的Ag–SnO2金属基复合材料,不符合DL/T 486-2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中隔离开关触头应镀银的要求。黑色区域的Ag含量低至75.33%,Cu含量和Sn含量则较高,这是因为Ag-SnO2镀层中的Ag与空气中的SO2、H2S等含硫化合物反应生成黑色的腐蚀产物β-Ag2S和Ag2SO3。随着腐蚀反应的进行,Ag-SnO2镀层表面逐渐由银白色转变为深灰色及黑色。绿色区域的Cu质量分数已升至82.31%,Sn的质量分数则与灰色区域相近,而Ag已检测不到,表明Ag-SnO2镀层中银的腐蚀产物发黑并脱落后,镀层中分散的SnO2无法保护铜基体,使得铜在潮湿环境下与空气中的O2、CO2和H2O反应生成绿色的碱式碳酸铜Cu2(OH)2CO3(俗称铜绿)。将绿色区域打磨后分析铜基体发现其中含99.72% Cu和0.15% Sn,说明该隔离开关触头的基体材质为纯铜,检出的少量锡来源于残余的镀层。

 

表1  110 kV隔离开关触头镀层上不同颜色区域及铜基体的元素成分分析结果

 

 

3. 2    镀层厚度检测

使用XL2 800手持式X射线荧光光谱仪检测110 kV隔离开关触头的镀银层厚度,结果显示银白色、黑色和绿色区域的镀银层厚度分别为23.953、16.885和0.000 μm。这说明随腐蚀反应的进行,镀层逐渐被消耗,直至完全损失。DL/T 486–2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中明确规定隔离开关触头的镀银层厚度不应小于20 μm。为节约成本,厂家常用的造假手段就是用镀锡代替或减少镀银量,这两种手段都可直接通过镀层测厚发现。但本次的造假是采用Ag-SnO2层代替Ag层,也是呈银白色,并且镀层厚度大于20 μm,仅通过颜色判断和测厚均无法发现,隐蔽性较强。Ag-SnO2镀层触头因为电导率较纯银低,主要用于继电器、低压开关等低压电器。若用于高压隔离开关,在大电流下很容易发热,存在严重安全隐患。

 

4    结语和建议

针对一起110 kV隔离开关触头腐蚀故障,使用手持式X射线荧光光谱仪分析触头的镀层成分,发现厂家使用Ag-SnO2镀层代替Ag镀层,Ag-SnO2镀层中的银被空气中的硫化物腐蚀后,铜基体被腐蚀,导致导电回路接触电阻升高,引发过热故障,是造成该故障的主要原因。为保证此类故障不再发生,应采取以下措施:

(1)高度重视在役高压隔离开关触头表面镀银层的腐蚀发黑、发绿现象,发黑说明镀银层已被腐蚀,发绿说明镀银层已被腐蚀完,腐蚀延伸到铜基体,会导致隔离开关触头的接触电阻升高,易引发隔离开关过热、烧毁、全站失压等安全事故,应尽快安排停电,及时更换失效的高压隔离开关触头。

(2)联系生产厂家,将同批次产品全部更换为合格产品,以消除安全隐患。

(3)加强对新建输变电工程高压隔离开关触头镀银层的检测,镀层成分和厚度均合格后方可入网。

 

参考文献:

[1]    曹胜利, 苑金海, 赵昌. 户外高压隔离开关腐蚀与防护分析[J]. 电气制造, 2007 (6): 46-48.

[2]    钟振蛟. 户外隔离开关导电回路过热的原因及对策[J]. 高压电器, 2005, 41 (4): 307-312.

[3]    闫斌, 邓大勇, 何喜梅, 等. 高压导电触头电镀工艺与失效分析[J]. 青海电力, 2008, 27 (3): 6-9.

[4]    梁方建, 张道乾. GW5-110型隔离开关触头发热缺陷分析及检修处理[J]. 高压电器, 2008, 44 (1): 88-90.

[5]    刘海龙, 龚杰, 万亦农, 等. 某110 kV变电站隔离开关普遍发热原因分析及防范措施[J]. 电工技术, 2016 (8): 99-101.

[6]    赵庆, 茅大钧. 户外高压隔离开关触头发热机理分析及预防过热故障措施探讨[J]. 电气应用, 2016, 35 (3): 72-76.

[7]    国家电网有限公司. 国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明[M]. 北京: 中国电力出版社, 2018.

[8]    刘纯, 谢亿, 胡加瑞, 等. 电网金属技术监督现状与发展趋势[J]. 湖南电力, 2016, 36 (3): 39-42.

[9]    徐雪霞, 冯砚厅, 柯浩, 等. 高压隔离开关触头镀银层质量检测分析[J]. 河北电力技术, 2013, 32 (3): 3-5, 11.

[10]    胡波, 武晓梅, 余韬, 等. X射线荧光光谱仪的发展及应用[J]. 核电子学与探测技术, 2015, 35 (7): 695-702, 706.

[11]    赵晨. X射线荧光光谱仪原理与应用探讨[J]. 电子质量, 2007 (2): 4-7.

[12]    金鑫, 金涌川, 李学斌, 等. 电气设备金属元素检测分析[J]. 电气应用, 2018, 37 (18): 80-85.

[13]    何翠强. 手持式X射线荧光光谱仪在金属材料分析中的应用研究[J]. 冶金与材料, 2018, 38 (4): 134-135.

[13]    谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013 (2): 36-39.

联系方式

邮件:sales@longduoholding.com
地址:北京市朝阳区惠河南街1069号水南庄壹号21栋
微信扫描关注我们:
在线客服

服务热线

400-709-6161

扫一扫,关注我们